蓝桥杯 2023-C-B-3 冶炼金属
题目描述
小蓝有一个神奇的炉子用于将普通金属O
冶炼成为一种特殊金属 X
。这个炉子有一个称作转换率的属性 V
,V
是一个正整数,这意味着消耗 V
个普通金
属O
恰好可以冶炼出一个特殊金属 X
,当普通金属O
的数目不足 V
时,无法继续冶炼。
现在给出了N
条冶炼记录,每条记录中包含两个整数 A
和 B
,这表示本次投入了 A
个普通金属 O
,最终冶炼出了B
个特殊金属 X
。每条记录都是独立
的,这意味着上一次没消耗完的普通金属O
不会累加到下一次的冶炼当中。
根据这N
条冶炼记录,请你推测出转换率 V
的最小值和最大值分别可能是多少,题目保证评测数据不存在无解的情况。
输入格式
第一行一个整数 N
,表示冶炼记录的数目。
接下来输入N
行,每行两个整数 A
、B
,含义如题目所述。
输出格式
输出两个整数,分别表示V
可能的最小值和最大值,中间用空格分开。
样例输入
3
75 3
53 2
59 2
样例输出
20 25
题目注释
当 V = 20 时,有:⌊75/20⌋ = 3,⌊ 53/20 ⌋ = 2,⌊ 59/20 ⌋ = 2,可以看到符合所有冶炼记录。
当 V = 25 时,有:⌊75/25⌋ = 3,⌊ 53/25 ⌋ = 2,⌊ 59/25 ⌋ = 2,可以看到符合所有冶炼记录。
且再也找不到比 20 更小或者比 25 更大的符合条件的V
值了。
对于 30% 的评测用例,1 ≤ N ≤ 102。
对于 60% 的评测用例,1 ≤ N ≤ 103。
对于 100% 的评测用例,1 ≤ N ≤ 104,1 ≤ B ≤ A ≤ 109。
代码一
我的方法是通过不断边界判断,找到符合条件的最小值和最大值。
#include <iostream>
#include <climits>
#include <vector>
using namespace std;
#define ll long long
#define vl vector<long long>
void solve() {
int num;cin >> num;
vl a(num), b(num);
for(int i = 0;i< num;++ i){
cin >> a[i] >> b[i];
}
ll min_val = -1, max_val = INT_MAX;
for(int i = 0;i < num;++ i){
if(min_val < (a[i] / (b[i] + 1)) + 1) min_val = a[i] / (b[i] + 1) + 1;
if(max_val > a[i] / b[i]) max_val = a[i] / b[i];
}
cout << min_val << " " << max_val << "\n";
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
// int _;cin >> _;
// while(_ --){
solve();
// }
return 0;
}
代码二
二分方法。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e4 + 10;
int n;
int get(int a, int b) {
int l = 1, r = 1e9 + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (a / mid <= b)
r = mid;
else
l = mid + 1;
}
return r;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
int minv = 1, maxv = 1e9;
for (int i = 0; i < n; ++i) {
int a, b;
cin >> a >> b;
minv = max(minv, get(a, b)); // 维护最小可能值
maxv = min(maxv, get(a, b - 1) - 1); // 维护最大可能值
}
cout << minv << " " << maxv << "\n";
return 0;
}
评论(已关闭)
评论已关闭